3D Games –
Doom: A Case Study

Abstract

Although 3D Games are created for entertainment, their programming involves a lot of skill and talent. A 3D game is one that presents to the player, a first- or third-person view of a realistic, three-dimensional environment.

The paper looks at the basic working of a 3D game. The two main parts of any game are the game engine, the software program that is responsible for responding to the player’s actions and providing the appropriate responses, and the game data, which will include graphic data, sounds, etc. Special focus is given to the game Doom, and the working of its engine is analysed. Various terms associated with this, such as vertices, linedefs, sectors and things, are described in detail. Other game engines are also discussed.

The Doom engine is of great importance because it was what led to the development of the whole genre of 3D gaming. Today’s 3D engines are far more sophisticated than Doom’s engine, but they could not have evolved without Doom.

By

Karthik Abhirama Krishna

Sree Nidhi Institute of Science and Technology

CSE II/IV

10-3-21 St. No. 7, Lane No. 2

East Marredpally, Secunderabad

Andhra Pradesh – 500 026

Phone: 7733441

Email: karthik_abhiram@yahoo.com
Web: http://karthik82.tripod.com
Contents

1. Introduction to 3D Games – from Wolfenstein 3D to Quake III

2. What makes a 3D game?

3. A First Look at the Doom Engine

4. Terminology Explained

5. Creating a Map

6. Features of the Engine

7. Later Game Engines

8. Conclusion

References

1. Introduction

Computer Gaming is something that has been in existence from the very early days of computers. One of the earliest games ever was Pong in 1972. In the 70s and 80s, arcade games, which were played on specialized platforms, became very popular. In the 80s many of these games were rewritten to work on PCs. By the late 80s, multimedia support started the craze of PC gaming.

In 1992, the first famous 3D game, Wolfenstein 3D was released by id Software (the name is written in lowercase). Instead of controlling a two-dimensional character in a two-dimensional environment, the player found himself in a realistic world where he could actually see from the character’s point of view. Although Wolf 3D’s graphics look cartoonish by today’s standards, it is a truly classic game.

1993 marked the actual start of the genre of 3D games, with id Software releasing Doom, which is today considered one of the best and most revolutionary PC games of all time. This was an extraordinarily realistic game and still stands out today. The technological advancements that id had made in such a short time was amazing.

Doom and Doom II (1994), were followed by Duke Nukem 3D (1995, 3D Realms Inc.), and the landmark id Software releases, Quake (1996) and Quake II (1997), which were promptly voted Game of the Year by almost every leading game magazine and website. The next year saw the release of Valve Software’s Half-Life, which had a strong science-fiction storyline and many innovations that set it apart from other 3D games. Many other first-person and third-person games have been made, with the most recent ones being Quake III Arena and it’s add-on, Team Arena.

The innovations that these games have brought about are more than just something intended for entertainment. The technologies used in these games are something that exploit the latest developments in computer graphics, networking, and artificial intelligence.

· Games like Quake III have optimized network code that allows one to play in a multiplayer game with others over the internet. Client-Server architecture is fully used today.

· id Software’s latest developments in the field of graphics (for their upcoming Doom game for 2002) were used to demonstrate the power of nVidia’s GeForce 3 graphics processor at the MacWorld Expo in Tokyo on Feb. 21, 2001.

· Games now use artificially intelligent characters, such as the ones you can talk and interact with in Half-Life, or the lethal bots in Quake III.

[image: image12.png]

This is a picture from the 1984 game Alley Cat by Bill Williams. 4-colour CGA is used.

[image: image13.png]|

Whereas in Wolfenstein 3D (1992, id Software) we have a 3D view of the player’s environment.

[image: image14.png]

In Doom, the graphics are far more realistic.

[image: image1.png]

The final picture, from Quake III, shows it’s truly outstanding graphics capabilities.

2. What makes a 3D Game?

A 3D game essentially consists of two parts of software that allow it to run on a computer. These are the Game Engine, and the Game Data.

The Game Engine is the actual program, the software written in C, C++ or Visual C++ that is responsible for generating everything you see and hear. When the player interacts with the game, the Engine provides the necessary response.

The Game Data is what the Engine works on. Data could be graphic files, sound files, music files, level information, configuration information, etc.

	Game Engine
	Game Data

	· Interacts with the computer’s operating system and hardware

· Contains complex programming to respond to the player’s actions in the game, such as movement, interacting with objects in the game, etc.

· In a DOS or Windows based game, the EXE file and some supporting files make up the engine.
	· Graphic files that are used by the Engine to generate the environments on the screen

· Sounds, Music, etc. that are used in the game.

· The game data is either stored in a single file (with all the resources packed together) or in separate files (such as all the music in one file, etc).

3. A first look at the Doom Engine

The Doom Engine was written in Watcom C by John Carmack, John Romero and Dave Taylor. It runs on DOS and is capable of generating 256 colour graphics. The game will run well on any machine above a 486, and it requires 8 MB of RAM.

In Doom the player finds himself on a lost moon base on Mars, infested with monsters from another dimension. The game is divided into a number of areas, called levels, which a player must complete. Each level consists of a number of structures such as rooms, large open areas, tunnels, dark and bright areas, etc., and there are various objects in the level that the player can interact with. There are enemies to shoot, weapons and other items that the player can pick up.

Let us then look at what the Doom engine must handle -

· Once the program starts, the player can select a difficulty setting and a level to play on.

· The Engine generates graphics depending on the player’s movements and adjusts lighting accordingly.

· The enemies are programmed to follow the player and attack him.

· The Engine must keep track of the positions of the player at all times and the status of all other objects in the game, right until the player exits the game.

Although Doom looks three-dimensional, the representation of the level is two-dimensional. No object can ever be on top of any other object. However, rooms, and other areas can have different floor and ceiling heights, giving the impression of being in a 3D world.

4. Terminologies explained

Some of the commonly used terms related to the Doom Engine are explained below:

4.1 Vertex

A single point in two-dimensional space. Represented by an X and Y coordinate.

4.2 Linedef and Sidedef

A linedef joins two vertices together. If a linedef is considered as a plane, then it’s two sides are the sidedefs. A sidedef is what is visible to the player. If a player can see both sides of a linedef, then the linedef is said to be two-sided (with two sidedefs, left and right). A linedef may also be one-sided where the player is capable of seeing only one side. This must be the right side.

An example of a linedef is a wall that you see in the game. The wall is defined by it’s two endpoints. However, you are able to see it’s surface also, and what you are seeing is the sidedef.

4.3 Sector

A sector is defined by a group of three or more linedefs that enclose a certain space that has a single floor height and a single ceiling height. A sector can have any shape, and since neighbouring sectors may be at different heights, an impression of a realistic world is created.

An example of a sector is a room that the player stands in.

4.4 Thing

An object in the game. Monsters, weapons, keys, and other objects are all “things”. A player start position is also a thing and there must be one of these in any level.

4.5 Level

Level is a generic term that refers to a single game portion with a well-defined beginning and end. A level begins with the player appearing in one location, moving forward while fighting monsters and solving puzzles, culminating in reaching an end point whereupon the player moves on to the next level.

4.6 Textures

Textures are the graphics that Doom applies to vertical (walls, etc.) surfaces, or sidedefs. In the game data file, these are Bitmap images. Depending on the way the level is constructed, different textures are applied to sidedefs.

For example, you have walls in Doom that look like they are made from old bricks, you have high-tech walls with wires and lights on them, etc. – all these are just graphic images that are “painted” on the sidedefs.

4.7 Flats

Flats are very similar to textures, but are applied to horizontal surfaces (floor, ceiling, railing top, etc.) in the sector definition (not in the sidedef definition, as with textures). Like changes in floor/ceiling height, any time you want to make a change in flat you must define a new sector.

4.8 Sprites

Sprites are the technical term for things. A sprite is a graphic image associated with an object. For example, you can see a monster move in the game, and various angles of it are visible depending on the player’s position. Thus, each one of these frames is a sprite.

4.9 WAD file

Doom is basically two parts – the EXE file, which contains the game program, that is, the Engine. Doom stores all the data it needs, the sounds, graphics, music, etc., in a file with extension WAD. This stands for Where’s All the Data.

4.10 Lump

Lump is a term used to describe a unit of raw data. This definition, however can be applied to all the components of a WAD file. For example, a single sound is a lump. Also each graphic image – each texture, each flat, each sprite, the title screen, all are lumps.

A level in Doom is stored in the WAD file as a set of 11 lumps.

5. Creating a Map

In this section, the process of creating a playable Doom level is explained in detail. The working of the game can be understood easily once this entire process is described.

Doom levels are built using a software called an Editor. A number of Level editors are available for free download from the internet. The editor that I have used here is called DoomCAD.

The DoomCAD Editor is simple to use and has an easy interface.

[image: image2.jpg]—

e — —

Fie Mode Thing Map Help
Change Game. 723475 Doom | E2Mi | v g2

)L
‘Dpen WAD File
Choose Level :

Save
Savehs

Save s BMP.
Revettto Saved

ToolBar
Integity Check ~ F12.

Est

Fig. 1

Vertices are placed in the map (fig. 2).

[image: image3.jpg]o2 yamz

Fig. 2

[image: image4.jpg]

Fig. 3

By joining the vertices with linedefs, a sector is created (fig. 3). This sector that I have just created consists of four linedefs. Since the player will be standing inside, he can only see the sides of these facing him. So all these linedefs are one-sided.

Each sidedef can have it’s own texture, and so I choose textures for the four sidedefs. I have chosen the GSTONE1 texture (fig. 4) for all – this will make the walls look as if they are made of green stone.

[image: image5.jpg]LineDef Edit
Trigger Texture

tetue/widih/height

(GRAYDANG /647128
GRAYPOIS /64/72
GRAYTALL /128/128
GRAVINE /256/128
GSTFONT /64128
o LeftSideDef) GSTFONT2 /641128
GSTFONT3 /64128
GSTGARG /64/128
GSTLION /647128

Picht SideDef

O
i

WallAbove

GeToNEl o
Wal B

GSTSATVR /64/128
GSTVINET /256/128
GSTVINE? /256/128

Fig. 4

Now I choose properties for the sector. It’s brightness is chosen as 190 (values can be 0-255), and it’s floor and ceiling heights are chosen. The flat to be painted on the floor and ceiling is also chosen. For example, I have chosen FLAT5_7 (fig. 5) to be displayed on the floor, and this looks like a rocky floor.

[image: image6.jpg]ctor Edi

Sector #2. Ceit 104, FIc 0,118

 Ceiling
Altude

fiz8

Texture

CEILA_3

Total Height 126

Floar
Altude
o

Testure

FLATS_7

Testures

FLATE 3
FLATE 4
FLATE 5
FLaTE &

FLATS 8

FLaTs

Special

amage_SuperStiobe.

amage_HelSlme
eiing_CushtRaise
amage_HNukage

Biightness.

[is0

Trigger
o

]

Fig. 5

I then place a player start position in the corner of the map (fig. 6).

[image: image7.jpg]

Fig. 6
Then I save the level, and play it in Doom (fig. 7).

[image: image8.jpg]

Fig. 7
The engine takes care of using the level information I have given, and generating this room. Here, I can move around using the controls in the game and the engine will automatically redraw the environment so that it looks realistic. I can also shoot with my weapon, and the engine will take care of playing the sound effects.

Notice the textures I have chosen – the green stone on the walls, rocky floor.

This is the way a map in Doom is created. Here a very simplistic map was shown. An actual playable level must contain an exit – that is, a special linedef with a property that it can be activated by the player by pressing a button, which will take him to the next level.

What we have now defined, is our own WAD file which contains just enough information for one level. So in this file we will have 11 lumps, as shown below (fig. 8).

[image: image9.jpg]Entries in e:\doom\pape.wad
Fle Edt Advanced Select GuuOny Music Help

. ; 3 -

B

Tiincs

LINEDEFS .

STOEDERS WinTex 4.3

VERTREES et

. S0l

SEkerors il 96

NODES,

SReTors

RESECE WAD edior for the games

Brockuar DOOM, DOOM2. HERETIE nd HEXEN

e
i arocronti aberenane
Hegistiation Info]

Click: display Dble Click: edit Cul-Click: select

Fig. 8

Our WAD does not contain any other information. The actual DOOM.WAD file is a huge file containing 2,306 lumps!

An example for a complete level, is as shown below. This is obviously a lot more complicated than the small sector that was just shown. This is a completely playable level that contains a large number of (nearly 70) interconnected sectors.

[image: image10.jpg]

Fig. 9

A scene from this level is as shown below –

[image: image11.jpg]n;ﬁ

Fig. 10

6. Features of the Engine

· Texture Mapped Environment – Unlike in earlier games, textures are painted on walls, which makes them more realistic. The Doom Engine’s texture mapping is fast, accurate, and seamless.

· Non-Orthogonal Walls – In Wolfenstein 3D, walls were always at right angles to each other. But in Doom sectors can be of any shape, and this allows for a very realistic look.

· Light Diminishing and Light Sourcing – Doom’s lighting is sector-based. Lighting is also realistic and adds depth because farther areas appear dimmer than nearer ones.

· Variable Floor and Ceiling Heights

· Environment animation – Parts of the environment can be animated, for example lights can glow on and off, etc.

· Multiplayer – Doom can be played over a network or over a modem.

The gameplay of Doom is frightening and a lot of fun. It’s sheer speed gives immense enjoyment to the player.

7. Later game engines

· 1995 – BUILD Engine by Ken Silverman – used in games like Duke Nukem 3D, Blood and Shadow Warrior. Considerably more advanced than Doom, because it added the capability of the player jumping up and down, etc., environment interaction was enhanced, and objects could cast shadows.

· 1996 – Quake Engine by John Carmack – never before had anyone seen such beautifully rendered 3D environments. The first real 3D game.

· 1997 – Quake II Engine – this engine was sold to other companies for the development of their own games, and games such as Kingpin, Half-Life have evolved from it. An advanced 3D engine that produced some of the best graphics ever. The Engine generated characters in the game using 3D polygonal models rather than sprites, which allowed them to have an extremely realistic look.

· 1999 – Quake III’s engine has already been used to develop Team Arena and American McGee’s Alice. It uses OpenGL extensively.

· The future – Doom 3? id Software is currently working on a new Doom game that will come out sometime in 2002. As seen from an early demonstration of the graphics capabilities of this engine, it is sure to revolutionise the face of 3D gaming forever.

8. Conclusion

Very complex programming is involved in creating a game. It requires skill and talent. Although Doom’s engine has been surpassed by many better ones (most created, however, by id Software themselves) it still has historical significance because without it, the others could not have come about. With technological advancements taking place everyday, we are sure to see some stunning games in the future – which again will stand out not just for their entertainment value, but for the hard work and genius that goes into programming them.

References

· PC World, January 1999 – Article “Games to Kill For” by Deepak Khurana

· The Unofficial WAD Designer’s Handbook by Ron Allen and Bill McClendon at http://www.newdoom.com/handbook
· The Official Doom and Doom II FAQ v6.666 by Hank Leukart available from http://www.idsoftware.com
· Video Footage from the New Doom’s graphics engine is available from Doomworld at http://www.doomworld.com
· Screenshots from Doom are from levels created by Varun, http://varun87.tripod.com
· Information on Doom and other games from http://karthik82.tripod.com
Doom (1993, Quake (1996, Quake II (1997, Quake III (1999, Team Arena (2001 by id Software http://www.idsoftware.com
Duke Nukem 3D (1995 by 3D Realms http://www.3drealms.com
PAGE
1

